1

1

Mark schemes

Q1.			
()	54 + 50 + 55		
(a)	3	1	
	= 53 (°C)		
	if no other mark awarded allow 1 mark		
	for 54 + 50 + 37 + 55		
	4 = 49 (°C)	1	
(1)		1	
(b)	(most reactive) magnesium zinc (least reactive) cobalt		
	allow ecf from question (a)	1	
(-)		1	
(c)	(18 ±) 2 (°C)	1	
(d)	control		
		1	
(e)	use the same mass of metal / powder	1	
(f)	(A) progress of reaction	•	
(1)	(A) progress of reaction	1	
	(B) activation energy		
		1	
	(C) products	1	
			[9]

Q2.

(a) $(3 \times M_r H_2 O = 3 \times (2 + 16) =) 54$

 $(A_r \mathbf{R} = 150 - 54 =) 96$ ignore units

alternative approach:

 $(M_{\rm r} \mathbf{R} O_3 = 150 - 6 =) 144 (1)$

 $(A_r \mathbf{R} = 144 - (3 \times 16) =) 96 (1)$ ignore units

(b)	(R =) molybdenum / Mo allow ecf from question (a)		
		1	
(c)	(total M_r of reactants) = 163	1	
	(% atom economy =) $\frac{119}{163}$ (×100)		
	allow correct use of an incorrectly calculated value of total <i>M</i> _r	1	
	= 73 (%)		
	allow 73.00613 (%) correctly rounded to at least 2 significant figures	1	
(d)	Level 2: Some logically linked reasons are given. There may also be a simple judgement.		
		3–4	
	Level 1 : Relevant points are made. They are not logically linked.	1–2	
	No relevant content	0	
	Indicative content		
	 carbon and iron are the cheapest reactants hydrogen is the most expensive reactant 		
	 separating solid products is expensive separating solid products is time consuming 		
	 in method 1, tungsten needs to be separated from tungsten carbide 		
	 in method 1, some tungsten is lost as tungsten carbide in method 1, the carbon dioxide produced will escape 		
	 in method 2, the water vapour produced will escape in method 2, no separation of solids is needed 		
	 in method 3, tungsten needs to be separated from iron oxide 		[10]
00			
Q3. (a)	(test) (add) bromine (water)	1	

(result) (changes from) brown / orange to colourless *ignore clear*

1

		1	
(b)	C _n H _{2n-2}	1	
(c)	H + H + H + H + H + H + H + H + H + H +		
(d)	(<i>M</i> _r (C ₆ H ₁₀ Cl ₂) =) 153	2	
	(% chlorine=) $\frac{71}{153} \times 100$ allow correct use of an incorrectly calculated value of M_r = 46.4 (%)	1	
Q4.	allow 46.405228758 (%) correctly rounded to at least 2 significant figures	1	[8]
(a)	gas	1	
(b)	-35 (°C) allow any value between -35 °C and -100 °C	1	
(c)	increase	1	
	increase allow become stronger	1	
(d)	chlorine gas is toxic	1	

	(e)	increased		1	
		chlorine (at or	oms) are now part of the solid (iron chloride)		
		the mass o	f the chlorine (atoms) is now also measured	1	
	(f)	burns very v	vigorously allow burns violently allow brighter (orange) glow allow (orange) flame allow explodes	1	
	(g)	2 Fe + 3 Br	$_{2} \rightarrow 2 \text{ FeBr}_{3}$ allow multiples	1	
	(h)	56 + (3 × 8	0)	1	
		= 296	ignore units	1	[11]
Q5		and	efore = 156.76 (g) s after = 156.76 (g) <i>allow 78.26</i> + <i>78.50</i> = 156.76 and 108.22 + 48.54 = 156.76		
		or			
		and	mass of beaker A and contents = 29.96 (g) mass of beaker B and contents = 29.96 (g) allow $108.22 - 78.26 = 29.96$ and		

48.54 - 78.50 = -29.96

1

1

(so) the mass of products equals the mass of the reactants or
(so) there is no change in mass during the reaction

allow (so) no atoms were lost or made
during the reaction

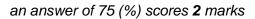
(b) filter / filtration

	allow a description of filtration	1
(c)	sodium nitrate (solution)	
	or silver nitrate (solution) or	
	sodium iodide (solution)	
	allow correct formulae	
	allow sodium / nitrate / silver / iodide ions	1
		1
(d)	to remove / evaporate the water	
	allow to dry (the solid)	1
(e)	$(\text{total } M_{\rm f} = 170 + 150) = 320$	
	allow (235 + 85) = 320	
		1
	(% atom economy =) 235	
	235 320 ×100	
	allow correct use of incorrectly	
	calculated total M _r	1
	= 73.4375 (%)	
		1
	= 73.4 (%)	
	allow an answer correctly calculated to	
	3 significant figures from an incorrect percentage calculation which uses the	
	values in the question	1
(f)	any one from:	
	 for sustainable development for economic reasons 	
	 to produce a high(er) percentage of useful product 	
	allow to reduce waste	1
		[10]
Q6.		
(a)	acid rain	1
(b)		
(0)	oxygen	1

	Ca	carbon	
		must be in this order 1	
(c	:) di	limming 1	
(d	d) 2	$2 \text{ CH}_4 + 3 \text{ O}_2 \rightarrow 2 \text{ CO} + 4 \text{ H}_2\text{O}$ allow multiples	
(e	e) ai	air 1	
	0)	oxygen 1	
	0)	oxides of nitrogen must be in this order 1	[8]
Q7.			
(a	a) s	5 1	
(b	o) a	a gas escapes	
(c	c) fro	rom 0.47 (g) to 0.86 (g) allow from 0.86 (g) to 0.47 (g) 1	
(d	4)	an answer of 0.83 (g) scores 2 marks an answer of 0.74 (g) scores 1 mark	
	<u>0</u>	<u>0.84 + 0.79 + 0.86</u> 3	
		1 = 0.83 (g)	
(e	e) in	1 ndependent	
(f)) ir	ncreases	
		1	
(g	<i>j)</i> I.	.3 (g) allow 1.30 (g) 1	[8]

Q8.			
(a)		an answer of 77 (%) scores 2 marks an answer of 78.63247863 (%) correctly rounded to at least 2 significant figures scores 1 mark	
	184 (232 + 6)	×100	1
	= 77 (%)	allow 77.31092437 (%) correctly rounded to at least 2 significant figures	1
(b)		an answer of 15 (kg) scores 2 marks	
	$\frac{38}{100} \times 40$		1
	= 15 (kg)	allow 15.2 (kg)	1
(c)		an answer of 102 scores 2 marks	
	(2 x 27) +	(3 x 16)	1
	= 102	ignore units	1
(d)		an answer of 89.3 (%) scores 3 marks	
	28.4 31.8 ×100		1
	= 89.30817	761 (%) allow 89.3081761(%) correctly rounded to at least 2 significant figures	1
	= 89.3 (%)	allow an answer correctly rounded to 3 significant figures from an incorrect calculation which uses the masses in the question	1

(e)	aluminium is more reactive than carbon allow aluminium is above carbon in the reactivity series	1
	(so) carbon cannot displace aluminium allow (so) carbon cannot replace aluminium or	
	(so) carbon cannot reduce aluminium oxide allow (so) carbon cannot remove oxygen from aluminium oxide allow (so) carbon will not react with aluminium oxide	
		1 [11]
Q9.		
(a)	7	1
(b)	small molecule	1
(c)	F ₂	1
(d)	the reactivity decreases (going down Group 7) allow the reactivity decreases from chlorine to iodine	1
	(because) chlorine displaces bromine and iodine allow (because) chlorine has two reactions	
	allow (because) neither bromine nor iodine can displace chlorine	1
	(and) bromine displaces iodine or iodine does not react allow (and) bromine has one reaction or iodine has no reactions	
	allow (and) iodine cannot displace bromine	1
(e)	80	1
(f)	(1.2 kg =) 1200 (g) or (900 g =) 0.9 (kg)	1
	$(\frac{900}{1200} \times 100) = 75(\%)$	


or

$$(\frac{0.9}{1.2} \times 100) = 75(\%)$$

allow an answer correctly calculated from:

or

$$(\frac{\text{conversion of 900}}{1.2} \times 100)$$

[9]

1

Q10.

(a)	gas		1
(b)	the gas eso	capes allow carbon dioxide escapes do not accept references to evaporation	1
(c)	5.12 (g)		1
(d)	4.00 (g) tria	al 1 allow 2.89 written in either space, or ringed in the table, unless contradicted by mass of copper carbonate or trial number	1
(e)	reheat		1
	(and rewei	gh) until constant mass an answer of heat to constant mass scores 2 marks if no other mark scored allow for 1 mark heat for longer or (heat at a) higher temperature alternative approach: (1) continue heating and pass gas through limewater (1) until the (lime)water stops bubbling or	1

	until the limewater no longer turns cloudy	
(f)	straight line of best fit must touch at least 5 of the 6 plots	1
(g)	correct value read from line of best fit in the graph allow tolerance of ±½ small square	1
(h)	(mass =)	
	168× answer from 168× 4 8.4 allow (mass =) answer from part (g) ×	
	20	1
	correctly calculated value (g)	1
	a correctly calculated value from their answer to part (g) scores 2 marks	
		[10]
Q11. (a)	incomplete combustion	1
	(because) insufficient / limited oxygen supply	1
(b)	any two from: • carbon monoxide toxic / poisonous <i>allow description of how carbon</i> <i>monoxide is toxic / poisonous</i> <i>ignore carbon monoxide is harmful /</i> <i>dangerous / deadly</i>	
	 greater public concern / awareness about pollution ignore comments about the effects of other pollutants ignore unspecified comments about carbon monoxide pollution 	
	 more cars so otherwise there would be more carbon monoxide entering atmosphere 	
	improved engine technology	
	catalytic converters have been introduced	2

(c)	 any one from: (to reduce) health problems allow (to reduce) specified health problems e.g. breathing difficulties, asthma, lung cancer 	
	 (to reduce) global dimming allow (to reduce) the effects of global dimming e.g. reduced light levels allow (to reduce) smog allow (to reduce) the formation of particulates ignore global warming 	
	do not accept to reduce soot	1
(d)	nitrogen (from atmosphere) reacts with oxygen (from atmosphere)	1
	at high temperature (in engine)	
	ignore heat / hot	
	or with a spark (from spark plug)	1
(e)	$2 \operatorname{NO}_2 \longrightarrow \operatorname{N}_2 + 2 \operatorname{O}_2$	
	allow multiples	
	if incorrect, allow N₂ for 1 mark	2
(f)	any one from: • acid rain	
	allow specific effects of acid rain	
	 respiratory problems allow specific respiratory problems e.g. breathing difficulties, asthma 	
	carbon monoxide	
	• global dimming or smog	2
	max 1 mark if global warming mentioned	2
(g)	transition metals	1 [12]

Q12.

(a) precipitate / solid formed

	allow colour change	1	
(b)	total mass before = 257.68 g total mass after = 257.68 g	1	
	so the mass of products equals the mass of the reactants	1	
(c)	0.01 g	1	
(d)	207 + (2 × 14) + (6 × 16) or 207 + 2 × [14 + (3 × 16)]	1	
	= 331 an answer of 331 scores 2 marks	1	
(e)	CrO ₄ ²⁻	1	
(f)	carbon dioxide is a gas allow a gas is produced	1	
	the gas escapes during the reaction	1	
	(so) the mass at the end is less than expected	1	[10]

Q13.

(a)	C ₅ H ₁₂	1
(b)	2:5	1
(c)	Α	1
(d)	Α	1
(e)	carbon dioxide	1
	water	1
(f)	propane	

			1
(g)	(8 ×	1) + (3 × 12)	1
	= 44		
		an answer of 44 scores 2 marks	1 [9]
Q14. (a)	because it is a good conductor of electricity.		
(b)	(i)	2.1 (%)	1
	(ii)	correct bar for calcium at 3.6 %	_
	()	allow error of +/- 0.05%	1
		correct bar for iron at 5.0 %	
		allow error of +/- 0.05%	1
(c)	(i)	decomposition	1
	(ii)	carbon dioxide	1
	(iii)	carbon = 1 <i>allow one</i> oxygen = 3	1
		allow three	1
	(iv)	44 (g) allow forty four	1
(d)	(i)	to make alloys for specific uses.	1
	(ii)	 any three from: to conserve resources of iron or iron ore allow steel instead of iron or iron ore allow limited resource or non-renewable to avoid the need for quarrying/mining to conserve energy resources or fossil fuels to limit the amount of carbon dioxide produced or to reduce global warming to reduce the amount of landfill <i>"it"</i> = steel 	

		ignore cost and reuse and time and waste	3	[13]
Q15.				
(a)	(i)	(thermal) decomposition allow decomposes or endothermic	1	
	(ii)	copper oxide	1	
(b)	(i)	the (potassium) carbonate did not decompose/change/react (when heated)		
		allow temperature not high enough		
		do not allow potassium did not decompose		
		ignore references to reactivity	1	
		the mass did not change or the limewater did not go cloudy	1	
		because no carbon dioxide produced	1	
	(ii)	the less reactive the metal the more (easily) its carbonate will decompose/react or vice versa		
		needs to be a relative comparison	2	
		allow max 1 mark where the distinction between a metal and its carbonate is not clear	-	
		allow 1 mark for carbonates of reactive metals do not decompose or vice versa		
(c)	(i)	make it economical (to extract the metal/iron)		
		allow make it worth extracting allow so they can make money/profit	1	
	(;;)	F a	-	
	(ii)	Fe	1	
		balanced correctly (2,3,4,3)		
		not ecf allow correct balanced equation but with 2Fe₂ on right for one mark		
			1	
	(iii)	iron from the blast furnace is brittle	1	
		steel produced is strong / flexible	1	
		allow steel has more/specific uses allow steel is rust-resistant		
			1	

"it" = iron

(iv)	(recycling) is used to conserve iron (ore) or energy or resources or minimise pollution or reduce the need to quarry <i>allow reverse arguments.</i>		
	(not reuse) because of damage, paint removal, rusting/corrosion, metal fatigue/weaker	1	

(not landfill) because sites have limited space **or** loss of habitats allow to reduce the use of landfill

1

[15]